- Graphing and interpreting graphs (pre-calculus).
- Limits and continuity. Finding limits algebraically or estimating them from numerical or graphical data. Continuity in terms of limits.
- Intermediate Value Theorem and Extreme Value Theorem.
- Vertical, horizontal, and oblique asymptotes. Limits involving infinity.
- Limit definition of the derivative and its relationship to continuity.
- Derivative rules including the Power Rule, Product Rule, Quotient Rule, and Chain Rule.
- Slope and tangent lines.
- Linear approximation and differentials.
- Instantaneous and average rates of change. Relationship among position, velocity, and acceleration functions.
- Higher order derivatives.
- Implicit Differentiation.
- Analysis of Graphs based on both pre-calculus methods and derivative information. This includes finding intervals of increase/decrease, relative minima/maxima, intervals of concavity, and inflection points.
- Mean value theorem and Rolle’s Theorem.
- Applications of derivatives, including optimization and related rates.
- Elementary differential equations and slope fields.
- Anti-differentiation and indefinite integrals.
- Techniques of anti-differentiation, including power rule, algebraic manipulation, and substitution.
- Finite Riemann sums and their limits. Relationship to definite integrals.
- The Fundamental Theorem of Calculus and definite integrals.
- Trapezoid Rule and other methods for estimating area.
- Exact area below a curve or between two curves, using definite integrals.
- Volumes of solids of revolution, by washer method and shell method.
- Accumulation functions.
- Relationships between position, velocity, and acceleration using integrals.
- Average value of a function over an interval.
- Models for exponential growth and decay.